
L02: BLUE and BLUP

1. A theorem and preliminaries

(1) Theorem

Suppose

(
y
y∗

)
∼

((
X
X∗

)
µ, σ2

(
Σ C
C ′ V

))
where E(y∗) = X∗µ = θ.

(i) By is BLUE (best linear unbiased estimator) for θ with respect to MSCPE risk
⇐⇒ BX = X∗ and BΣ(I −XX+) = 0

(ii) By is BLUP (best linear unbiased predictor) for y∗ with respect to MSCPE risk
⇐⇒ BX = X∗ and (BΣ− C ′)(I −XX+) = 0.

(2) X+

X+ is the existent and unique matrix satisfying the four conditions XX+X = X,
X+XX+ = X+, (XX+)′ = XX+ and (X+X)′ = X+X.
This X+ is called Moore-Penrose inverse of X.
I −XX+ and I −X+X are both symmetric and idempotent.

(3) AB = 0 ⇐⇒ A ∈ {H(I −BB+) : H}. Here H and A are of the same dimensions.

⇒: If AB = 0, then ABB+ = 0.
So A = A(I −BB+ +BB+) = A(I −BB+) ∈ {H(I −BB+) : H}.

⇐: If A ∈ {H(I −BB+) : H}, then A = H(I −BB+) for some H.
So AB = H(I −BB+)B = H(B −B) = 0.

(4) Definite and semi-definite matrices
For A′ = A, A > 0 ⇐⇒ all eigenvalues of A are > 0;

A < 0 ⇐⇒ all eighenvalues of A are < 0.
If A ≥ 0, then BAB′ ≥ 0 since x′BAB′x = y′Ay ≥ 0 for all x where y = Bx.
If A ≤ 0, then BAB′ ≤ 0 since x′BAB′ = y′Ay ≤ 0 for all x where y = Bx.

2. Proof the iff conditions for BLUE

(1) ⇐ (The condition is sufficient)
BX = X∗ =⇒ E(By) = BXµ = X∗µ = θ =⇒ By ∈ LUE(θ).
If Ty ∈ LUE(θ), then TXµ = E(Ty) = θ = X∗µ for all µ. So TX = X∗.
Now TX = X∗ = BX =⇒ (T −B)X = 0 =⇒ T −B ∈ {H(I −XX+) : H}. Thus

T ∈ B + {H(I −XX+) : H}.

With given condition BΣ(I −XX+) = 0, because Σ > 0,

Cov(Ty)− Cov(By) = σ2(TΣT ′ −BΣB′)
= σ2 {[B +H(I −XX+)]Σ[B +H(I −XX+)]′ −BΣB′}
= σ2H(I −XX+)Σ(I −XX+)H ′

= σ2[H(I −XX+)]Σ[H(I −XX+)]′ ≥ 0.

Thus By is a minimum variance-covariance matrix LUE for θ = X∗µ.
Therefore it is BLUE for θ with respect to MSCPE risk.
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(2) ⇒ (The condition is necessary)
Suppose By is BLUE for θ. We show BX = X∗ and BΣ(I −XX+) = 0.
By ∈ LUE(θ). So X∗µ = θ = E(By) = BXµ for all µ. Thus BX = X∗.
If Ty ∈ LUE(θ), by the proof in (1), T = B +H(I −XX+).
From 0 ≤ Cov(Ty)− Cov(By) for all Ty ∈ LUE(θ),

BΣ(I −XX+)H ′ +H(I −XX+)ΣB′ +H(I −XX+)Σ(I −XX+)H ′ ≥ 0 for all H.

For Σ > 0, in the EVD Σ = PΛP ′ Λ = diag(λ1, ..., λn) with λi > 0 ∀ i.
Let 0 < λ < 2

max(λ1,..,λn)
and H = −λBΣ(I −XX+). The displayed inequality becomes

[BΣ(I −XX+)](λ2Σ− 2λI)[BΣ(I −XX+)]′

= [BΣ(I −XX+)]PΓP ′[BΣ(I −XX+)]′ ≥ 0

where Γ = diag(λ1λ
2 − 2λ, ..., λnλ

2 − 2λ) < 0 since λiλ
2 − 2λ = λiλ

(
λ− 2

λi

)
< 0 ∀ i.

Suppose BΣ(I − XX+) ̸= 0. WLOG assume the first column of [BΣ(I − XX+)]′,
α = [BΣ(I −XX+)]′e1 ̸= 0. Then β = P ′α ̸= 0. Now

e′1[BΣ(I −XX+)]PΓP ′[BΣ(I −XX+)]′e1 = α′PΓP ′α = β′Γβ < 0.

This contradiction implies that BΣ(I −XX+) ̸= 0 is false. Thus BΣ(I −XX+) = 0.

3. Proof iff condition for BLUP

(1) ⇐ (The condition is sufficient)
BX = X∗ =⇒ By ∈ LUE(E(y∗)) =⇒ By ∈ LUP(y∗).
If Ty ∈ LUP(y∗), then Ty ∈ LUE(E(y∗)). By the proof in 1, T ∈ B+{H(I−XX+) : H}.
With D = (BΣ− C ′)(I −XX+),

Cov(Ty − y∗)− Cov(By − y∗)
= σ2 {[H(I −XX+)]Σ[H(I −XX+)]′ +HD′ +DH ′} .

D = 0 =⇒ Cov(Ty − y∗)− Cov(By − y∗) = [H(I −XX+)]Σ[H(I −XX+)]′ ≥ 0.
So By is BLUP for y∗ with respect to MSCPE risk.

(2) ⇒ (The condition is necessary)
By is BLUP for y∗ =⇒ By ∈ LUP(y∗) = LUE(E(y∗)) =⇒ BX = X∗.
If Ty ∈ LUP (y∗), then Ty ∈ LUE(E(y∗)). So T ∈ B + {H(I −XX+) : H}.
By is BLUP for y∗ =⇒ Cov(Ty − y∗)− Cov(By − y∗) ≥ 0,

H(I −XX+)Σ(I −XX+)H ′ +HD′ +DH ′ ≥ 0 for all H

where D = (BΣ− C ′)(I −XX+). Select λ as in (2) of 2 and let H = −λD. Then

D(λ2Σ− 2λI)D′ ≥ 0

Suppose D ̸= 0. WOLG assume the first column of D′, α = D′e1 ̸= 0.
By the same argument as in (2) of 2, e′1D(λ2Σ− 2λ)D′e1 = α′(λ2Σ− 2λI)α < 0.
The contradiction shows that D = 0, i.e., (BΣ− C ′)(I −XX+) = 0.
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L03: Consistent estimators

1. Sample mean

(1) y ∈ LUE(µ)
Sample mean y is a LUE for the population mean µ, i.e., y ∈ LUE(µ). But is it the best
one in LUE(µ) or even in UE(µ) by MSCPE risk?

(2) Two sufficient conditions for θ̂ to be the best one in UE(θ) wrt MSCPE risk.
(i) E(θ̂) = θ and θ̂ is a function of a sufficient and complete statistic S.
(ii) E(θ̂) = θ and Cov(θ̂) = CRLB(θ).

Caution: If a sufficient condition does not hold, that does not mean the conclusion does
not hold since a sufficient condition may not be a necessary one. See 1 in HW01.

(3) Sufficient and necessary conditions
In L02 we learned a sufficient and necessary condition for By to be the BLUE of θ, and
for By to be the BLUP for y∗. We show that sample mean is BLUE for population mean.

Write

(
y
y∗

)
∼

((
X
X∗

)
µ,

(
Σ C
C ′ V

))
where y =

y1
...
yn

, y1, ..., yn is a random sam-

ple from a population with parameters (µ, V ). Let y = By be the sample mean.

By HW01, X = 1n ⊗ Ik, X∗ = Ik, Σ = In ⊗ V , C = 0 and B = 1′n⊗Ik
n .

Now BX = 1′n⊗Ik
n (1n ⊗ Ik) =

n⊗Ik
n = Ik = X∗.

BΣ(I −XX+) = 1′n⊗Ik
n (In ⊗ V ) [I − (1n ⊗ Ik)(1n ⊗ Ik)

+]

= 1′n⊗V
n

[
I − (1n ⊗ Ik)(1

+
n ⊗ I+k )

]
= 1′n⊗V

n [I − 1n1
+
n ⊗ Ik]

= 1′n⊗V
n − 1′n⊗V

n = 0.

So y is BLUE for µ by MSCPE risk.
Comment: y is also BLUP for y∗ since C = 0.

2. Strongly consistent estimators

(1) Asymptotically unbiased estimator
If E(θ̂n) = θ, then θ̂n is an UE for θ — from statical point of view.
If E(θ̂n) ̸= θ, but limnE(θ̂n) = θ, then θ̂n is an asymptotically UE for θ –from dynamic
point of view.

(2) Strongly consistent estimator
To define more asymptotical properties of θ̂n we need the convergence of random vari-
able/vectors.

Xn converges to X almost sure, or with probability 1 denoted as Xn
a.s.−→ X or Xn

wp1−→ X
if P (Xn −→ X) = 1.
If θ̂n

a.s.−→ θ, then θ̂n is called a strongly consistent estimator for θ

(3) Strong law of large numbers (SLLN)
If X1, ..., Xn are iid with (µ, Σ), then X1+···+Xn

n
a.s.−→ µ.

Thus sample mean is always a strong consistent estimator for population mean.
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(4) Properties

Xn
a.s.−→ X ⇐⇒ g(Xn)

a.s.−→ g(X) for all continuous g(·)
Xn

a.s.−→ X ⇐⇒ Xnk

a.s.−→ X for all subsequence Xnk
.(

Xn

Yn

)
a.s.−→

(
X
Y

)
⇐⇒ Xn

a.s.−→ X and Yn
a.s.−→ Y.

3. Consistent estimators

(1) Consistent estimators

Xn
p−→ X (Xn converges to X in probability) if limn P (∥Xn−X∥ < ϵ) = 1 for all ϵ > 0.

Xn
p−→ X ⇐⇒ Xn −X

p−→ 0
def⇐⇒ Xn −X = op(1).

If θ̂n
p−→ θ, then θ̂n is called a consistent estimator for θ.

(2) Relations

Xn
a.s.−→ X =⇒ Xn

p−→ X Xn
p−→ X =⇒ ∃Xnk

such that Xnk

a.s.−→ X.

(3) Weak law of large numbers (WLLN)

If X1, ..., Xn are iid with (µ, Σ), then X1+···+Xn
n

p−→ µ

(4) Properties

Xn
p−→ X ⇐⇒ g(Xn)

p−→ g(X) for all continuous g(·)
Xn

p−→ X ⇐⇒ Xnk

p−→ X for all subsequence Xnk
.(

Xn

Yn

)
p−→

(
X
Y

)
⇐⇒ Xn

p−→ X and Yn
p−→ Y.

Ex: Let yn be sample mean and µ be the population mean. By SLLN or WLLN and

their properties y
p−→ µ =⇒ (y)2

p−→ µ2, i.e., (yn)
2 is a consistent estimator for µ2.

(5) Sequence bounded in probability
Xn is bounded in probability denoted as Xn = Op(1) if ∀ ϵ > 0, ∃Mϵ > 0 and Nϵ > 0
such that P (∥Xn∥ < Mϵ) > 1− ϵ for all n > Nϵ.
If
√
n(θ̂n − θ) = Op(1), then

θ̂n − θ =
1√
n
[
√
n(θ̂n − θ)] = op(1)Op(1) = op(1) =⇒ θ̂n − θ

p−→ 0 ⇐⇒ θ̂n
p−→ θ,

i.e., θ̂n is a consistent estimator for θ.
The above is true when θ is population median and θ̂n is sample median.
So sample median is a consistent estimator for population median.
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