L02: BLUE and BLUP

- 1. A theorem and preliminaries
 - (1) Theorem

Suppose
$$\begin{pmatrix} y \\ y_* \end{pmatrix} \sim \left(\begin{pmatrix} X \\ X_* \end{pmatrix} \mu, \sigma^2 \begin{pmatrix} \Sigma & C \\ C' & V \end{pmatrix} \right)$$
 where $E(y_*) = X_* \mu = \theta$.

- (i) By is BLUE (best linear unbiased estimator) for θ with respect to MSCPE risk $\iff BX = X_*$ and $B\Sigma(I XX^+) = 0$
- (ii) By is BLUP (best linear unbiased predictor) for y_* with respect to MSCPE risk $\iff BX = X_*$ and $(B\Sigma C')(I XX^+) = 0$.
- (2) X^+

 X^+ is the existent and unique matrix satisfying the four conditions $XX^+X = X$, $X^+XX^+ = X^+$, $(XX^+)' = XX^+$ and $(X^+X)' = X^+X$. This X^+ is called Moore-Penrose inverse of X.

 $I - XX^+$ and $I - X^+X$ are both symmetric and idempotent.

- (3) $AB = 0 \iff A \in \{H(I BB^+) : H\}$. Here H and A are of the same dimensions.
 - ⇒: If AB = 0, then $ABB^+ = 0$. So $A = A(I - BB^+ + BB^+) = A(I - BB^+) \in \{H(I - BB^+) : H\}$.
 - ⇐: If $A \in \{H(I BB^+) : H\}$, then $A = H(I BB^+)$ for some H. So $AB = H(I - BB^+)B = H(B - B) = 0$.
- (4) Definite and semi-definite matrices

For A' = A, $A > 0 \iff$ all eigenvalues of A are > 0; $A < 0 \iff$ all eigenvalues of A are < 0. If $A \ge 0$, then $BAB' \ge 0$ since $x'BAB'x = y'Ay \ge 0$ for all x where y = Bx. If $A \le 0$, then $BAB' \le 0$ since $x'BAB' = y'Ay \le 0$ for all x where y = Bx.

- 2. Proof the iff conditions for BLUE
 - (1) \Leftarrow (The condition is sufficient) $BX = X_* \Longrightarrow E(By) = BX\mu = X_*\mu = \theta \Longrightarrow By \in \text{LUE}(\theta).$ If $Ty \in \text{LUE}(\theta)$, then $TX\mu = E(Ty) = \theta = X_*\mu$ for all μ . So $TX = X_*.$ Now $TX = X_* = BX \Longrightarrow (T - B)X = 0 \Longrightarrow T - B \in \{H(I - XX^+) : H\}.$ Thus

$$T \in B + \{H(I - XX^+) : H\}.$$

With given condition $B\Sigma(I - XX^+) = 0$, because $\Sigma > 0$,

$$Cov(Ty) - Cov(By) = \sigma^2 (T\Sigma T' - B\Sigma B')$$

= $\sigma^2 \{ [B + H(I - XX^+)]\Sigma [B + H(I - XX^+)]' - B\Sigma B' \}$
= $\sigma^2 H(I - XX^+)\Sigma (I - XX^+)H'$
= $\sigma^2 [H(I - XX^+)]\Sigma [H(I - XX^+)]' \ge 0.$

Thus By is a minimum variance-covariance matrix LUE for $\theta = X_*\mu$. Therefore it is BLUE for θ with respect to MSCPE risk. (2) \Rightarrow (The condition is necessary)

Suppose By is BLUE for θ . We show $BX = X_*$ and $B\Sigma(I - XX^+) = 0$. $By \in \text{LUE}(\theta)$. So $X_*\mu = \theta = E(By) = BX\mu$ for all μ . Thus $BX = X_*$. If $Ty \in \text{LUE}(\theta)$, by the proof in (1), $T = B + H(I - XX^+)$. From $0 \leq \text{Cov}(Ty) - \text{Cov}(By)$ for all $Ty \in \text{LUE}(\theta)$,

$$B\Sigma(I - XX^+)H' + H(I - XX^+)\Sigma B' + H(I - XX^+)\Sigma(I - XX^+)H' \ge 0 \text{ for all } H.$$

For $\Sigma > 0$, in the EVD $\Sigma = P\Lambda P' \Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$ with $\lambda_i > 0 \forall i$. Let $0 < \lambda < \frac{2}{\max(\lambda_1, ..., \lambda_n)}$ and $H = -\lambda B\Sigma (I - XX^+)$. The displayed inequality becomes

$$[B\Sigma(I - XX^+)](\lambda^2\Sigma - 2\lambda I)[B\Sigma(I - XX^+)]'$$

= $[B\Sigma(I - XX^+)]P\Gamma P'[B\Sigma(I - XX^+)]' \ge 0$

where $\Gamma = \operatorname{diag}(\lambda_1 \lambda^2 - 2\lambda, ..., \lambda_n \lambda^2 - 2\lambda) < 0$ since $\lambda_i \lambda^2 - 2\lambda = \lambda_i \lambda \left(\lambda - \frac{2}{\lambda_i}\right) < 0 \ \forall i$. **Suppose** $B\Sigma(I - XX^+) \neq 0$. WLOG assume the first column of $[B\Sigma(I - XX^+)]'$, $\alpha = [B\Sigma(I - XX^+)]'e_1 \neq 0$. Then $\beta = P'\alpha \neq 0$. Now

$$e_1'[B\Sigma(I - XX^+)]P\Gamma P'[B\Sigma(I - XX^+)]'e_1 = \alpha'P\Gamma P'\alpha = \beta'\Gamma\beta < 0.$$

This contradiction implies that $B\Sigma(I - XX^+) \neq 0$ is false. Thus $B\Sigma(I - XX^+) = 0$.

- 3. Proof iff condition for BLUP
 - (1) \Leftarrow (The condition is sufficient) $BX = X_* \Longrightarrow By \in \text{LUE}(E(y_*)) \Longrightarrow By \in \text{LUP}(y_*).$ If $Ty \in \text{LUP}(y_*)$, then $Ty \in \text{LUE}(E(y_*))$. By the proof in 1, $T \in B + \{H(I - XX^+) : H\}$. With $D = (B\Sigma - C')(I - XX^+),$

$$Cov(Ty - y_*) - Cov(By - y_*) = \sigma^2 \{ [H(I - XX^+)] \Sigma [H(I - XX^+)]' + HD' + DH' \}.$$

 $D = 0 \Longrightarrow \operatorname{Cov}(Ty - y_*) - \operatorname{Cov}(By - y_*) = [H(I - XX^+)]\Sigma[H(I - XX^+)]' \ge 0.$ So By is BLUP for y_* with respect to MSCPE risk.

(2) \Rightarrow (The condition is necessary) By is BLUP for $y_* \Longrightarrow By \in \text{LUP}(y_*) = \text{LUE}(E(y_*)) \Longrightarrow BX = X_*$. If $Ty \in LUP(y_*)$, then $Ty \in \text{LUE}(E(y_*))$. So $T \in B + \{H(I - XX^+) : H\}$. By is BLUP for $y_* \Longrightarrow \text{Cov}(Ty - y_*) - \text{Cov}(By - y_*) \ge 0$,

$$H(I - XX^{+})\Sigma(I - XX^{+})H' + HD' + DH' \ge 0 \text{ for all } H$$

where $D = (B\Sigma - C')(I - XX^+)$. Select λ as in (2) of 2 and let $H = -\lambda D$. Then

$$D(\lambda^2 \Sigma - 2\lambda I)D' \ge 0$$

Suppose $D \neq 0$. WOLG assume the first column of D', $\alpha = D'e_1 \neq 0$. By the same argument as in (2) of 2, $e'_1 D(\lambda^2 \Sigma - 2\lambda) D'e_1 = \alpha'(\lambda^2 \Sigma - 2\lambda I)\alpha < 0$. The contradiction shows that D = 0, i.e., $(B\Sigma - C')(I - XX^+) = 0$.

L03: Consistent estimators

1. Sample mean

- (1) $\overline{y} \in \text{LUE}(\mu)$ Sample mean \overline{y} is a LUE for the population mean μ , i.e., $\overline{y} \in LUE(\mu)$. But is it the best one in $LUE(\mu)$ or even in $UE(\mu)$ by MSCPE risk?
- (2) Two sufficient conditions for $\hat{\theta}$ to be the best one in UE(θ) wrt MSCPE risk. (i) $E(\theta) = \theta$ and $\hat{\theta}$ is a function of a sufficient and complete statistic S. (ii) $E(\hat{\theta}) = \theta$ and $Cov(\hat{\theta}) = CRLB(\theta)$.

Caution: If a sufficient condition does not hold, that does not mean the conclusion does not hold since a sufficient condition may not be a necessary one. See 1 in HW01.

(3) Sufficient and necessary conditions

In L02 we learned a sufficient and necessary condition for By to be the BLUE of θ , and for By to be the BLUP for y_* . We show that sample mean is BLUE for population mean.

Write
$$\begin{pmatrix} y \\ y_* \end{pmatrix} \sim \left(\begin{pmatrix} X \\ X_* \end{pmatrix} \mu, \begin{pmatrix} \Sigma & C \\ C' & V \end{pmatrix} \right)$$
 where $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, y_1, ..., y_n$ is a random sam-

ple from a population with parameters (μ, V) . Let $\overline{y} = By$ be the sample mean. By HW01, $X = 1_n \otimes I_k$, $X_* = I_k$, $\Sigma = I_n \otimes V$, C = 0 and $B = \frac{1'_n \otimes I_k}{n}$.

Now
$$BX = \frac{1'_n \otimes I_k}{n} (1_n \otimes I_k) = \frac{n \otimes I_k}{n} = I_k = X_*.$$

$$B\Sigma (I - XX^+) = \frac{1'_n \otimes I_k}{n} (I_n \otimes V) [I - (1_n \otimes I_k)(1_n \otimes I_k)^+]$$

$$= \frac{1'_n \otimes V}{n} [I - (1_n \otimes I_k)(1_n^+ \otimes I_k^+)] = \frac{1'_n \otimes V}{n} [I - 1_n 1_n^+ \otimes I_k]$$

$$= \frac{1'_n \otimes V}{n} - \frac{1'_n \otimes V}{n} = 0.$$

So \overline{y} is BLUE for μ by MSCPE risk. **Comment:** \overline{y} is also BLUP for y_* since C = 0.

- 2. Strongly consistent estimators
 - (1) Asymptotically unbiased estimator

If $E(\hat{\theta}_n) = \theta$, then $\hat{\theta}_n$ is an UE for θ — from statical point of view. If $E(\widehat{\theta}_n) \neq \theta$, but $\lim_n E(\widehat{\theta}_n) = \theta$, then $\widehat{\theta}_n$ is an asymptotically UE for θ -from dynamic point of view.

(2) Strongly consistent estimator

To define more asymptotical properties of $\hat{\theta}_n$ we need the convergence of random variable/vectors.

 X_n converges to X almost sure, or with probability 1 denoted as $X_n \xrightarrow{a.s.} X$ or $X_n \xrightarrow{wp1} X$ if $P(X_n \longrightarrow X) = 1$. If $\hat{\theta}_n \xrightarrow{a.s.} \theta$, then $\hat{\theta}_n$ is called a strongly consistent estimator for θ

(3) Strong law of large numbers (SLLN) If $X_1, ..., X_n$ are iid with (μ, Σ) , then $\xrightarrow[n]{X_1 + \dots + X_n} \xrightarrow[n]{a.s.} \mu$. Thus sample mean is always a strong consistent estimator for population mean. (4) Properties

$$\begin{array}{ccc} X_n \xrightarrow{a.s.} X & \iff & g(X_n) \xrightarrow{a.s.} g(X) \text{ for all continuous } g(\cdot) \\ X_n \xrightarrow{a.s.} X & \iff & X_{n_k} \xrightarrow{a.s.} X \text{ for all subsequence } X_{n_k}. \\ \begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{a.s.} \begin{pmatrix} X \\ Y \end{pmatrix} & \iff & X_n \xrightarrow{a.s.} X \text{ and } Y_n \xrightarrow{a.s.} Y. \end{array}$$

3. Consistent estimators

(1) Consistent estimators

 $X_n \xrightarrow{p} X \ (X_n \text{ converges to } X \text{ in probability}) \text{ if } \lim_n P(||X_n - X|| < \epsilon) = 1 \text{ for all } \epsilon > 0.$ $X_n \xrightarrow{p} X \iff X_n - X \xrightarrow{p} 0 \iff X_n - X = o_p(1).$ If $\widehat{\theta}_n \xrightarrow{p} \theta$, then $\widehat{\theta}_n$ is called a consistent estimator for θ .

- (2) Relations $X_n \xrightarrow{a.s.} X \Longrightarrow X_n \xrightarrow{p} X \qquad X_n \xrightarrow{p} X \Longrightarrow \exists X_{n_k} \text{ such that } X_{n_k} \xrightarrow{a.s.} X.$
- (3) Weak law of large numbers (WLLN) If $X_1, ..., X_n$ are iid with (μ, Σ) , then $\xrightarrow{X_1 + \dots + X_n} \xrightarrow{p} \mu$
- (4) Properties

$$\begin{array}{cccc} X_n \xrightarrow{p} X & \Longleftrightarrow & g(X_n) \xrightarrow{p} g(X) \text{ for all continuous } g(\cdot) \\ X_n \xrightarrow{p} X & \Longleftrightarrow & X_{n_k} \xrightarrow{p} X \text{ for all subsequence } X_{n_k}. \\ \begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{p} \begin{pmatrix} X \\ Y \end{pmatrix} & \Longleftrightarrow & X_n \xrightarrow{p} X \text{ and } Y_n \xrightarrow{p} Y. \end{array}$$

Ex: Let \overline{y}_n be sample mean and μ be the population mean. By SLLN or WLLN and their properties $\overline{y} \xrightarrow{p} \mu \Longrightarrow (\overline{y})^2 \xrightarrow{p} \mu^2$, i.e., $(\overline{y}_n)^2$ is a consistent estimator for μ^2 .

(5) Sequence bounded in probability

 X_n is bounded in probability denoted as $X_n = O_p(1)$ if $\forall \epsilon > 0, \exists M_{\epsilon} > 0$ and $N_{\epsilon} > 0$ such that $P(||X_n|| < M_{\epsilon}) > 1 - \epsilon$ for all $n > N_{\epsilon}$. If $\sqrt{n}(\hat{\theta}_n - \theta) = O_p(1)$, then

$$\widehat{\theta}_n - \theta = \frac{1}{\sqrt{n}} [\sqrt{n}(\widehat{\theta}_n - \theta)] = o_p(1)O_p(1) = o_p(1) \Longrightarrow \widehat{\theta}_n - \theta \xrightarrow{p} 0 \Longleftrightarrow \widehat{\theta}_n \xrightarrow{p} \theta,$$

i.e., $\hat{\theta}_n$ is a consistent estimator for θ .

The above is true when θ is population median and $\hat{\theta}_n$ is sample median. So sample median is a consistent estimator for population median.